perm filename BUG.TMP[MF,DEK] blob
sn#752807 filedate 1984-05-03 generic text, type T, neo UTF8
This is METAFONT, WAITS Version -80.0 (INIMF) 3 MAY 1984 02:42
**bug
(BUG.MF[MF,DEK] (FONT1B.MF[MF,DEK])
{tracingedges:=1}
{tracingtitles:=1}
{tracingequations:=1}
{tracingspecs:=2}
{tracingpens:=1}
{tracingchoices:=1}
{tracingstats:=2}
{tracingonline:=1}
{tracingoutput:=1}
{tracingmacros:=3}
test(TEXT3)->kludge;if.str(SUFFIX2)="":openwindow1from(0,0)to(420,166)at(-20,31
0);openwindow2from(0,167)to(420,333)at(-20,310);openwindow3from(0,334)to(420,50
0)at(-20,310);window:=1;init.normal(1);clear;(TEXT3);shipit;window:=2;init.bold
(1);clear;(TEXT3);shipit;window:=3;init.boldx(1);clear;(TEXT3);shipit;else:open
window0from(0,0)to(420,500)at(-40,310);window:=0;init(SUFFIX2)(2);clear;(TEXT3)
;shipit;fi;
(SUFFIX0)<-
(SUFFIX1)<-test
(SUFFIX2)<-normal
(TEXT3)<-char.U
kludge->(0,0)=(0,0)
{((0,0))=((0,0))}
{if}
{("normal")=("")}
{false}
{openwindow}
{-(40)}
{window:=0}
## window=0
init.normal(EXPR2)->"normal";numeric.thinwidth,thickwidth,capheight,xheight,hhe
ight,ydepth,em;thinwidth=11(EXPR2);thickwidth=15(EXPR2);em=200(EXPR2);capheight
=130(EXPR2);xheight=90(EXPR2);hheight=140(EXPR2);ydepth=40(EXPR2);
(SUFFIX0)<-init
(SUFFIX1)<-normal
(EXPR2)<-2
normal
{numeric}
{(11)*(2)}
{(thinwidth)=(22)}
## thinwidth=22
{(15)*(2)}
{(thickwidth)=(30)}
## thickwidth=30
{(200)*(2)}
{(em)=(400)}
## em=400
{(130)*(2)}
{(capheight)=(260)}
## capheight=260
{(90)*(2)}
{(xheight)=(180)}
## xheight=180
{(140)*(2)}
{(hheight)=(280)}
## hheight=280
{(40)*(2)}
{(ydepth)=(80)}
## ydepth=80
clear->numeric.x[],y[],x[]l,y[]l,x[]r,y[]r,dx[],dy[];e:=nulledges;
{numeric}
{nulledges}
{e:=edges}
char.U->setwidth0.75em;pos1(1.1thickwidth,10);pos2(thickwidth,10);pos3(thickwid
th,40);pos4(0.5[thickwidth,thinwidth],75);pos5(0.9[thickwidth,thinwidth],130);p
os6(thinwidth,180);pos7(1.1thinwidth,190);x1l=0.1em;x7l=1-0.1em;y1=y7=capheight
;x2=x1;y=0.3capheight;dz2=(0,-1);x3=0.75[x4,x2];y3=0.75[y2,y4];x4r=0.5[x2r,x6r]
;y4l=-0.05capheight;dz4=(1,0);x5=0.71[x4,x6];y5=0.71[y6,y4];x6=x7;y6=1/3capheig
ht;dz6=(0,1);stroke(1,2,0.2,0.05,0.05);curve(2,3,4);curve(4,5,6);stroke(6,7,0.8
,0.05,0.05);labelpos(1,2,3,4,5,6,7);
(SUFFIX0)<-char
(SUFFIX1)<-U
setwidth<expression>->chardw:=(EXPR0);numeric.w;w=chardw;if.proofing>0:for.n:=0
step0.1em.until.chardw+1:proofrule((n,-ydepth),(n,hheight));endfor.proofrule((0
,-ydepth),(chardw,-ydepth));proofrule((0,0),(chardw,0));proofrule((0,xheight),(
chardw,xheight));proofrule((0,capheight),(chardw,capheight));proofrule((0,hheig
ht),(chardw,hheight));fi
{(0.75)*(400)}
(EXPR0)<-300
{chardw:=300}
{numeric}
{(w)=(300)}
## w=300
{if}
{(0)>(0)}
{false}
pos(EXPR3)(EXPR4)->z(SUFFIX2)=0.5[z(SUFFIX2)l,z(SUFFIX2)r];z(SUFFIX2)r-z(SUFFIX
2)l=((EXPR3),0)rotated(EXPR4)
(SUFFIX0)<-
(SUFFIX1)<-pos
(SUFFIX2)<-1
{(1.1)*(30)}
(EXPR3)<-33.00018
(EXPR4)<-10
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1r
{((x1r,y1r))-((x1l,y1l))}
{(0.5)*((linearform,linearform))}
{((x1l,y1l))+((linearform,linearform))}
{((x1,y1))=((linearform,linearform))}
## y1=0.5y1l+0.5y1r
## x1=0.5x1l+0.5x1r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1l
{((x1r,y1r))-((x1l,y1l))}
{((33.00018,0))rotated(10)}
{((linearform,linearform))=((32.49866,5.73032))}
## y1l=y1r-5.73032
## x1l=x1r-32.49866
pos(EXPR3)(EXPR4)->z(SUFFIX2)=0.5[z(SUFFIX2)l,z(SUFFIX2)r];z(SUFFIX2)r-z(SUFFIX
2)l=((EXPR3),0)rotated(EXPR4)
(SUFFIX0)<-
(SUFFIX1)<-pos
(SUFFIX2)<-2
(EXPR3)<-30
(EXPR4)<-10
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2r
{((x2r,y2r))-((x2l,y2l))}
{(0.5)*((linearform,linearform))}
{((x2l,y2l))+((linearform,linearform))}
{((x2,y2))=((linearform,linearform))}
## y2=0.5y2l+0.5y2r
## x2=0.5x2l+0.5x2r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2l
{((x2r,y2r))-((x2l,y2l))}
{((30,0))rotated(10)}
{((linearform,linearform))=((29.54407,5.20935))}
## y2l=y2r-5.20935
## x2l=x2r-29.54407
pos(EXPR3)(EXPR4)->z(SUFFIX2)=0.5[z(SUFFIX2)l,z(SUFFIX2)r];z(SUFFIX2)r-z(SUFFIX
2)l=((EXPR3),0)rotated(EXPR4)
(SUFFIX0)<-
(SUFFIX1)<-pos
(SUFFIX2)<-3
(EXPR3)<-30
(EXPR4)<-40
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-3
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-3l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-3r
{((x3r,y3r))-((x3l,y3l))}
{(0.5)*((linearform,linearform))}
{((x3l,y3l))+((linearform,linearform))}
{((x3,y3))=((linearform,linearform))}
## y3=0.5y3l+0.5y3r
## x3=0.5x3l+0.5x3r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-3r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-3l
{((x3r,y3r))-((x3l,y3l))}
{((30,0))rotated(40)}
{((linearform,linearform))=((22.98111,19.28375))}
## y3l=y3r-19.28375
## x3l=x3r-22.98111
pos(EXPR3)(EXPR4)->z(SUFFIX2)=0.5[z(SUFFIX2)l,z(SUFFIX2)r];z(SUFFIX2)r-z(SUFFIX
2)l=((EXPR3),0)rotated(EXPR4)
(SUFFIX0)<-
(SUFFIX1)<-pos
(SUFFIX2)<-4
{(22)-(30)}
{(0.5)*(-8)}
{(30)+(-4)}
(EXPR3)<-26
(EXPR4)<-75
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-4
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-4l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-4r
{((x4r,y4r))-((x4l,y4l))}
{(0.5)*((linearform,linearform))}
{((x4l,y4l))+((linearform,linearform))}
{((x4,y4))=((linearform,linearform))}
## y4=0.5y4l+0.5y4r
## x4=0.5x4l+0.5x4r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-4r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-4l
{((x4r,y4r))-((x4l,y4l))}
{((26,0))rotated(75)}
{((linearform,linearform))=((6.72931,25.1141))}
## y4l=y4r-25.1141
## x4l=x4r-6.72931
pos(EXPR3)(EXPR4)->z(SUFFIX2)=0.5[z(SUFFIX2)l,z(SUFFIX2)r];z(SUFFIX2)r-z(SUFFIX
2)l=((EXPR3),0)rotated(EXPR4)
(SUFFIX0)<-
(SUFFIX1)<-pos
(SUFFIX2)<-5
{(22)-(30)}
{(0.9)*(-8)}
{(30)+(-7.19995)}
(EXPR3)<-22.80005
(EXPR4)<-130
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-5
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-5l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-5r
{((x5r,y5r))-((x5l,y5l))}
{(0.5)*((linearform,linearform))}
{((x5l,y5l))+((linearform,linearform))}
{((x5,y5))=((linearform,linearform))}
## y5=0.5y5l+0.5y5r
## x5=0.5x5l+0.5x5r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-5r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-5l
{((x5r,y5r))-((x5l,y5l))}
{((22.80005,0))rotated(130)}
{((linearform,linearform))=((-14.65533,17.46568))}
## y5l=y5r-17.46568
## x5l=x5r+14.65533
pos(EXPR3)(EXPR4)->z(SUFFIX2)=0.5[z(SUFFIX2)l,z(SUFFIX2)r];z(SUFFIX2)r-z(SUFFIX
2)l=((EXPR3),0)rotated(EXPR4)
(SUFFIX0)<-
(SUFFIX1)<-pos
(SUFFIX2)<-6
(EXPR3)<-22
(EXPR4)<-180
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-6
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-6l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-6r
{((x6r,y6r))-((x6l,y6l))}
{(0.5)*((linearform,linearform))}
{((x6l,y6l))+((linearform,linearform))}
{((x6,y6))=((linearform,linearform))}
## y6=0.5y6l+0.5y6r
## x6=0.5x6l+0.5x6r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-6r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-6l
{((x6r,y6r))-((x6l,y6l))}
{((22,0))rotated(180)}
{((linearform,linearform))=((-21.99966,0))}
## y6l=y6r
## x6l=x6r+21.99966
pos(EXPR3)(EXPR4)->z(SUFFIX2)=0.5[z(SUFFIX2)l,z(SUFFIX2)r];z(SUFFIX2)r-z(SUFFIX
2)l=((EXPR3),0)rotated(EXPR4)
(SUFFIX0)<-
(SUFFIX1)<-pos
(SUFFIX2)<-7
{(1.1)*(22)}
(EXPR3)<-24.20013
(EXPR4)<-190
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-7
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-7l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-7r
{((x7r,y7r))-((x7l,y7l))}
{(0.5)*((linearform,linearform))}
{((x7l,y7l))+((linearform,linearform))}
{((x7,y7))=((linearform,linearform))}
## y7=0.5y7l+0.5y7r
## x7=0.5x7l+0.5x7r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-7r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-7l
{((x7r,y7r))-((x7l,y7l))}
{((24.20013,0))rotated(190)}
{((linearform,linearform))=((-23.83197,-4.20186))}
## y7l=y7r+4.20186
## x7l=x7r+23.83197
{(0.1)*(400)}
{(x1r-32.49866)=(40.00244)}
## x1r=72.5011
#### x1l=40.00244
#### x1=56.25177
{(0.1)*(400)}
{(1)-(40.00244)}
{(x7r+23.83197)=(-39.00244)}
## x7r=-62.83441
#### x7l=-39.00244
#### x7=-50.91843
{(y7r+2.10094)=(260)}
## y7r=257.89906
#### y7l=262.10092
#### y7=260
{(y1r-2.86516)=(260)}
## y1r=262.86516
#### y1l=257.13484
#### y1=260
{(x2r-14.77203)=(56.25177)}
## x2r=71.0238
#### x2l=41.47974
#### x2=56.25177
{(0.3)*(260)}
{(y)=(78.0008)}
## y=78.0008
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-2
{-(1)}
{((dx2,dy2))=((0,-1))}
## dy2=-1
## dx2=0
{(56.25177)-(x4r-3.36465)}
{(0.75)*(-x4r+59.61642)}
{(x4r-3.36465)+(-0.75x4r+44.71233)}
{(x3r-11.49055)=(0.25x4r+41.34767)}
## x3r=0.25x4r+52.83823
{(y4r-12.55705)-(y2r-2.60468)}
{(0.75)*(linearform)}
{(y2r-2.60468)+(linearform)}
{(y3r-9.64188)=(linearform)}
## y3r=0.25y2r+0.75y4r-0.42708
{(x6r)-(71.0238)}
{(0.5)*(x6r-71.0238)}
{(71.0238)+(0.5x6r-35.5119)}
{(x4r)=(0.5x6r+35.5119)}
## x4r=0.5x6r+35.5119
{(0.05)*(260)}
{-(13.0008)}
{(y4r-25.1141)=(-13.0008)}
## y4r=12.11331
#### y4l=-13.0008
#### y4=-0.44374
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-4
{((dx4,dy4))=((1,0))}
## dy4=0
## dx4=1
{(x6r+10.99983)-(0.5x6r+32.14725)}
{(0.71)*(0.5x6r-21.14742)}
{(0.5x6r+32.14725)+(0.35501x6r-15.0148)}
{(x5r+7.32767)=(0.85501x6r+17.13245)}
## x5r=0.85501x6r+9.80478
{(-0.44374)-(y6r)}
{(0.71)*(-y6r-0.44374)}
{(y6r)+(-0.71y6r-0.31506)}
{(y5r-8.73285)=(0.29y6r-0.31506)}
## y5r=0.29y6r+8.41779
{(x6r+10.99983)=(-50.91843)}
## x6r=-61.91826
#### x5r=-43.13554
#### x4r=4.55276
#### x3r=53.97643
#### x6l=-39.9186
#### x6=-50.91843
#### x5l=-28.48021
#### x5=-35.80788
#### x4l=-2.17654
#### x4=1.18811
#### x3l=30.99532
#### x3=42.48587
{(y6r)=(86.66667)}
## y6r=86.66667
#### y5r=33.55054
#### y6l=86.66667
#### y6=86.66667
#### y5l=16.08485
#### y5=24.81769
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-6
{((dx6,dy6))=((0,1))}
## dy6=1
## dx6=0
stroke(SUFFIX0)(SUFFIX1)(EXPR2)(EXPR3)(EXPR4)->fill.z(SUFFIX0)l.if.not.unknown.
dz(SUFFIX0):{dz(SUFFIX0)}fi.if(EXPR2)<>0:..(EXPR3)[(EXPR2)[z(SUFFIX0)l,z(SUFFIX
1)l],(EXPR2)[z(SUFFIX0),z(SUFFIX1)] ]{z(SUFFIX1)l-z(SUFFIX0)l}fi..z(SUFFIX1)l.i
f.not.unknown.dz(SUFFIX1):{dz(SUFFIX1)}fi&z(SUFFIX1)l..z(SUFFIX1)r&z(SUFFIX1)r.
if.not.unknown.dz(SUFFIX1):{-dz(SUFFIX1)}fi.if(EXPR2)<>0:..(EXPR4)[(EXPR2)[z(SU
FFIX0)r,z(SUFFIX1)r],(EXPR2)[z(SUFFIX0),z(SUFFIX1)] ]{z(SUFFIX0)r-z(SUFFIX1)r}f
i..z(SUFFIX0)r.if.not.unknown.dz(SUFFIX0):{-dz(SUFFIX0)}fi&z(SUFFIX0)r..z(SUFFI
X0)l&cycle;showit;
(SUFFIX0)<-1
(SUFFIX1)<-2
(EXPR2)<-0.2
(EXPR3)<-0.05
(EXPR4)<-0.05
fill<expression>->addto.e.contour(EXPR0)withweight1
{if}
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-1
{unknown((dx1,dy1))}
{not(true)}
{false}
{if}
{(0.2)<>(0)}
{true}
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2l
{((41.47974,y2r-5.20935))-((40.00244,257.13484))}
{(0.2)*((1.4773,y2r-262.3442))}
{((40.00244,257.13484))+((0.29546,0.2y2r-52.46803))}
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2
{((56.25177,y2r-2.60468))-((56.25177,260))}
{(0.2)*((0,y2r-262.60468))}
{((56.25177,260))+((0,0.2y2r-52.52013))}
{((56.25177,0.2y2r+207.47987))-((40.2979,0.2y2r+204.66681))}
{(0.05)*((15.95387,2.81306))}
{((40.2979,0.2y2r+204.66681))+((0.79774,0.14066))}
0.2y2r+204.80746
! Undefined y coordinate has been replaced by 0.
stroke->...PR2)[z(SUFFIX0),z(SUFFIX1)] ]{z
(SUFFIX1)l-z(SUFFIX0)l}fi.....
char.U->...(0,1);stroke(1,2,0.2,0.05,0.05)
;curve(2,3,4);curve(4,5,6);...
test->...=0;init(SUFFIX2)(2);clear;(TEXT3)
;shipit;fi;
p.2,l.35 test.normal(char.U)
;
? s
OK, entering scrollmode...
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2l
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1l
{((41.47974,y2r-5.20935))-((40.00244,257.13484))}
y2r-262.3442
! Undefined y coordinate has been replaced by 0.
<recently read> }
stroke->...X1)] ]{z(SUFFIX1)l-z(SUFFIX0)l}
fi..z(SUFFIX1)l.if.not.unkn...
char.U->...(0,1);stroke(1,2,0.2,0.05,0.05)
;curve(2,3,4);curve(4,5,6);...
test->...=0;init(SUFFIX2)(2);clear;(TEXT3)
;shipit;fi;
p.2,l.35 test.normal(char.U)
;
I need a `known' y value for this part of the path.
The value I found (see above) was no good;
so I'll try to keep going by using zero instead.
{fi}
{if}
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-2
{unknown((0,-1))}
{not(false)}
{true}
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2l
y2r-5.20935
! Undefined y coordinate has been replaced by 0.
stroke->....if.not.unknown.dz(SUFFIX1):{dz
(SUFFIX1)}fi&z(SUFFIX1)l..z...
char.U->...(0,1);stroke(1,2,0.2,0.05,0.05)
;curve(2,3,4);curve(4,5,6);...
test->...=0;init(SUFFIX2)(2);clear;(TEXT3)
;shipit;fi;
p.2,l.35 test.normal(char.U)
;
I need a `known' y value for this part of the path.
The value I found (see above) was no good;
so I'll try to keep going by using zero instead.
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-2
{fi}
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2l
y2r-5.20935
! Undefined y coordinate has been replaced by 0.
<recently read> ..
stroke->...):{dz(SUFFIX1)}fi&z(SUFFIX1)l..
z(SUFFIX1)r&z(SUFFIX1)r.if....
char.U->...(0,1);stroke(1,2,0.2,0.05,0.05)
;curve(2,3,4);curve(4,5,6);...
test->...=0;init(SUFFIX2)(2);clear;(TEXT3)
;shipit;fi;
p.2,l.35 test.normal(char.U)
;
I need a `known' y value for this part of the path.
The value I found (see above) was no good;
so I'll try to keep going by using zero instead.
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2r
y2r
! Undefined y coordinate has been replaced by 0.
<recently read> &
stroke->...1)}fi&z(SUFFIX1)l..z(SUFFIX1)r&
z(SUFFIX1)r.if.not.unknown....
char.U->...(0,1);stroke(1,2,0.2,0.05,0.05)
;curve(2,3,4);curve(4,5,6);...
test->...=0;init(SUFFIX2)(2);clear;(TEXT3)
;shipit;fi;
p.2,l.35 test.normal(char.U)
;
I need a `known' y value for this part of the path.
The value I found (see above) was no good;
so I'll try to keep going by using zero instead.
{if}
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-2
{unknown((0,-1))}
{not(false)}
{true}
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2r
y2r
! Undefined y coordinate has been replaced by 0.
stroke->...r.if.not.unknown.dz(SUFFIX1):{-
dz(SUFFIX1)}fi.if(EXPR2)<>0...
char.U->...(0,1);stroke(1,2,0.2,0.05,0.05)
;curve(2,3,4);curve(4,5,6);...
test->...=0;init(SUFFIX2)(2);clear;(TEXT3)
;shipit;fi;
p.2,l.35 test.normal(char.U)
;
I need a `known' y value for this part of the path.
The value I found (see above) was no good;
so I'll try to keep going by using zero instead.
dz->(dx(SUFFIX2),dy(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-dz
(SUFFIX2)<-2
{-((0,-1))}
{fi}
{if}
{(0.2)<>(0)}
{true}
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1r
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2r
{((71.0238,y2r))-((72.5011,262.86516))}
{(0.2)*((-1.4773,y2r-262.86516))}
{((72.5011,262.86516))+((-0.29546,0.2y2r-52.57224))}
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-1
z->(x(SUFFIX2),y(SUFFIX2))
(SUFFIX0)<-
(SUFFIX1)<-z
(SUFFIX2)<-2
{((56.25177,y2r-2.60468))-((56.25177,260))}
{(0.2)*((0,y2r-262.60468))}
{((56.25177,260))+((0,0.2y2r-52.52013))}
{((56.25177,0.2y2r+207.47987))-((72.20564,0.2y2r+210.29292))}